

高速FFF方式 3 Dプリンター AMESOS Blade1Pro ご提案書

2023年6月版

■ Blade1Pro 概要

「Blade1Pro」はX/Y軸稼働にはリニアモーターを採用し、300mm/sの印刷速度を実現。一般的な3Dプリンターの推奨印刷速度30~50mm/sに対し、非常に高い印刷効率を誇ります。Polymaker社との連携により、高速印刷に対応可能な専用ハイフロー樹脂を採用。「速さ」と「質」の両方で制作現場の期待にお応えします。

AMESOS とは

製品の開発を行うAMESOS社はアクリビス・システムズ社(Akribis Systems Pte Ltd)のスピンオフ企業です。アクリビス・システムズ社は日本の大手電機会社の出資でも話題となった、リニアステージ(リニアガイドや架台などを組み合わせた製品)の大手サーボシステムメーカーです。過去5年、3 Dプリンター分野では、他社へのリニアレール等の出荷実績があります。

■ FFFとは?

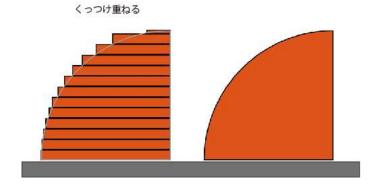
FFF(Fused Filament Fabrication)方式は「樹脂材料(フィラメント)をヒーターで熱し、溶解した材料をノズルから吐出、柔らかい樹脂線を積み重ねて造形する方式です。(FDMと同じ方式です)

吐出された「線」で縁取りを行い、面を塗る事で「面」ができ、面を重ねてゆくと 「立体物」になります。

ご注意:Blade1Proで使える材料は「樹脂」のみになります。 金属材料はございません。

Blade1Proなどの 造形方法

長所:樹脂そのものが使える。安価


短所:細かい造形が苦手。サポートが取りにくい

■ Blade1Pro スペック一覧

プリントエリア (mm) ※設定により10mm程小さくなります	W300×D300×T400mm
ヘッド数 / ノズル温度(MAX)	2ヘッド / 500℃
積層ピッチ	0.05~0.4mm ※設定・材料により制限あり
最大印刷速度	300mm /s
最大加速度	5000mm /s²
移動速度	0-500mm /s
位置精度	XY: ±0.001mm / Z: 0.01mm
成形精度	XY: ±0.1mm / Z: 0.05mm
ビルドプレート温度 (MAX)	180℃
対応ファイル形式	STL,OBJ,3MF
対応フィラメント径	1.75mm
本体サイズ	W780×D590×T950mm
本体重量	80kg
操作方法	7インチ タッチスクリーン
対応スライスソフト	BladeAcc
接続方式	USBケーブル・Udisk・LAN
電源環境	200V単相
最大消費電力	1 Kw
その他機能	オートレベリング・フィラメント切れアラーム

■ Blade1Pro の特徴

■ 超高速造形が可能に

リニアモーター駆動により最大印刷速度「300mm/s」を実現。これまで 3 D造形の弱点だった「造形時間の長さ」を大幅に短縮できます

■ 専用のハイフロー造形樹脂

超高速印刷に対応した専用樹脂をPolyMaker社と共同開発。早いだけでなく、造形精度も向上しています

■ リニアモーターによる高い位置決め精度

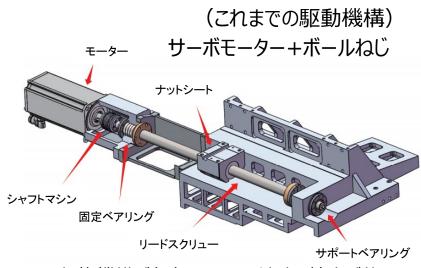
位置決め精度は機械精度に依存せず、アクリビス・システムズ社の高精度リニアを使用するため、高精度の位置決めが実現

■ サポート材が使用可能な2ヘッド

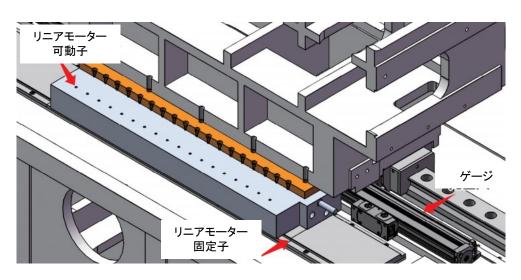
速いだけでなく、2 ヘッドモデルのためサポート材が使用可能。印刷後の後処理もより簡単になりました

■ よりスマートな機能

タッチパネル、オートレベリング、フィラメント切れ検知機能搭載 ビルドプレートはフレキシブル仕様



■ Blade1Pro の特徴


■ 超高速造形と高い位置決め精度

Blade1Pro の駆動機構

リニアモーター構造

いくつか転換機構が存在するため、速度と精度が落ちる

直接駆動、より高速、より高い位置決め精度

これまでは、回転型モーターであるステッピングモーターやサーボモーターとボールねじの組み合わせで直線運動に変換してきたのが主流でした。しかしモーターで作られた力は、ボールねじやプーリー、ゴムベルトを経由して作用していたため、力のロスが大きく、精度にも限界がありました。一方リニアモーターではレール上でN極、S極の効き合う力と、N極どうし・S極どうしの反発する力が発生、駆動レールにダイレクトに力が伝わるため、パワーロスが少ない(丸いモーターが直線になるイメージ)のが最大の特徴です。また位置決め精度は機械精度に依存せず、リニアスケールに依存するため、高精度のリニアスケールを使用することによって高い位置精度が実現します。

■ (専用材料) BladeMate PLA Pro / ABS / PETG ※銅製ノズルを使用

・BladeMate PLA Pro → スタンダードな高速印刷用PLA 2000cm3(約2kg以上) ホワイト・ブラック・レッド・オレンジ 販売価格: 15,000円

・BladeMate ABS → 印刷品質に優れ、印刷時の臭気も 少ない高印刷専用ABS

1000g ホワイト・ブラック 販売価格: 6,000円

		BladeMate PETG-ESD
引張強度 (X-Y) (MPa)	ASTM D638 (ISO 527)	30.5
破断伸び (X-Y) (%)	ASTM D638 (ISO 527)	7
曲げ強度(X-Y) (MPa)	ASTM D790 (ISO 178)	63.9
曲げ弾性率(X-Y) (MPa)	ASTM D790 (ISO 178)	2201
シャルピー衝撃強度 (X-Y) (kJ/m 2)	ASTM D256 (ISO 179)	5.9
ビカット軟化温度 (°C)	ASTM D1525 (ISO 306 GB/T 1633)	82
荷重たわみ温度- 0.45MPa (°C)	ASTM D648(ISO 75) 0.45MPa	75
表面抵抗率 (Ω)	ANSI ESD S11.11	103 - 104

		BladeMate PLA Pro	BladeMate ABS
引張強度 (X-Y) (MPa)	ASTM D638 (ISO 527)	53	40
破断伸び (X-Y) (%)	ASTM D638 (ISO 527)	4.5	12
曲げ強度(X-Y) (MPa)	ASTM D790 (ISO 178)	82	64
曲げ弾性率(X-Y) (MPa)	ASTM D790 (ISO 178)	3104	2200
アイゾット衝撃強度 (X-Y) (kJ/m 2)	ASTM D256 (ISO 180)	14	21.1
ビカット軟化温度 (°C)	ASTM D1525 (ISO 306 GB/T 1633)	62	-
荷重たわみ温度- 0.45MPa (°C)	ASTM D648(ISO 75) 0.45MPa	50	85

・BladeMate PETG → 硬くて強いPLAと、丈夫で耐衝撃性 のあるABSの中間に位置する素材。安定したプリントが可能 2000cm3(約2kg以上) ブラックのみ 販売価格: 12,000円

・BladeMate PETG-ESD → 静電気放電 (ESD) の安全性と優れた靭性を兼ね備えた素材 2000cm3(約2kg以上) ブラックのみ

販売価格:23,000円

■ (専用材料) BladeMate PETCF / PAHTCF ※硬化鋼ノズルを使用

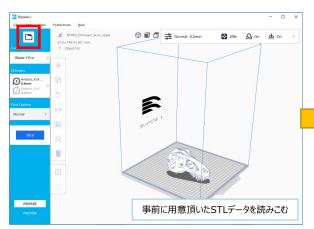
・BladeMate PETCF → 高剛性、高硬度、高強度、耐摩耗性に優れる。ナイロンより扱いやすいお勧め材料

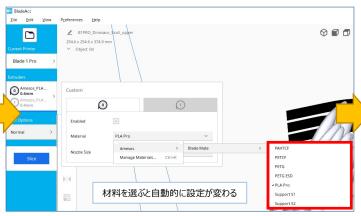
2000cm3(約2kg以上) ブラックのみ 販売価格: 39,000円

・BladeMate PAHTCF → 耐熱ナイロン基材と15%の高剛性 カーボンファイバーを組み合わせて作られた材料。高い機械的強度と 高い耐熱性を誇り、寸法安定性も向上

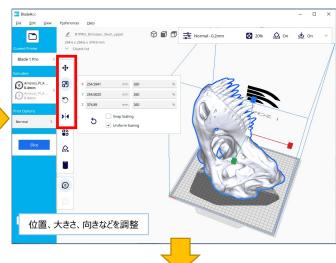
2000cm3(約2kg以上) ブラックのみ

販売価格: 45,000円

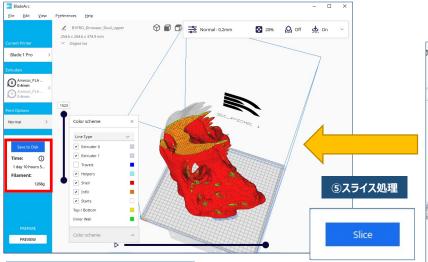

		BladeMate PETCF	BladeMate PAHTCF
引張強度 (X-Y) (MPa)	ASTM D638 (ISO 527)	92	105
破断伸び (X-Y) (%)	ASTM D638 (ISO 527)	2	1.6
曲げ強度 (X-Y) (MPa)	ASTM D790 (ISO 178)	127	151
曲げ弾性率(X-Y) (MPa)	ASTM D790 (ISO 178)	5400	6140
シャルピー衝撃強度(X- Y) (kJ/m 2)	ASTM D256 (ISO 179)	6	
ビカット軟化温度(°C)	ASTM D1525 (ISO 306 GB/T 1633)	83	
荷重たわみ温度- 0.45MPa (°C)	ASTM D648(ISO 75) 0.45MPa	148.8	193


■ Blade1Pro 付属専用スライスソフト「Blade Acc」

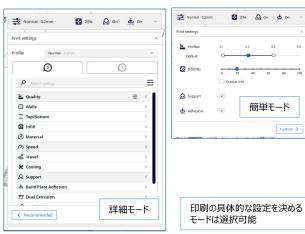
ここでは付属専用スライスソフト「Blade Acc」を説明します。


①STLデータ読込

②材料 選択(HT-Eは本体で選択)


③編集(移動・縮尺・回転など)

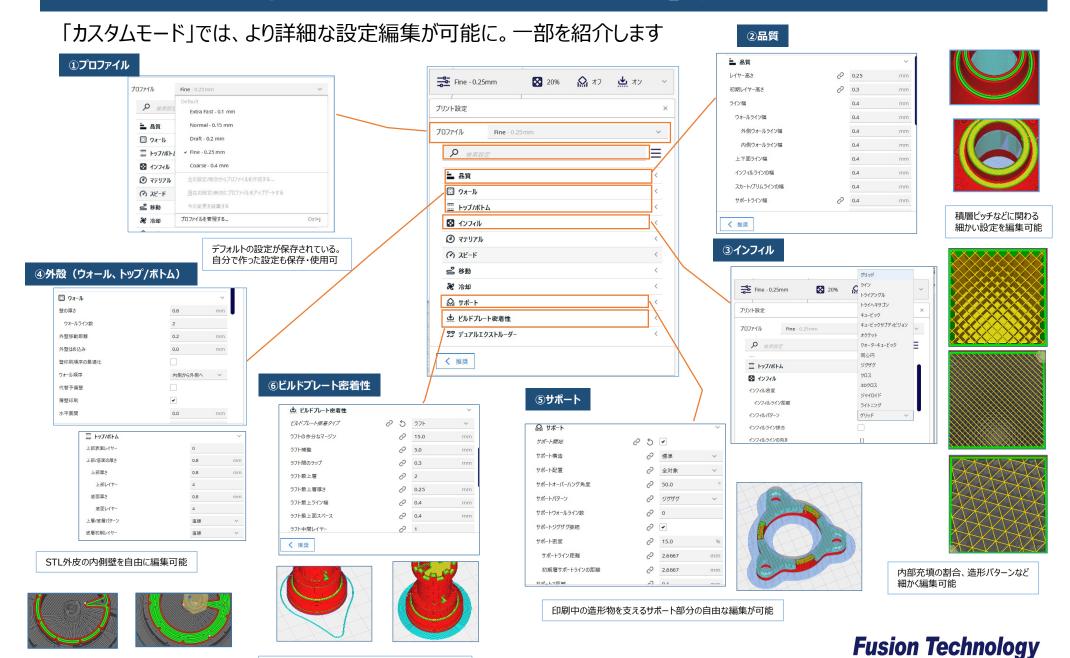
⑦印刷、完成


⑥変換後シミュレーション(形状・時間・重さなど)

レイヤービューモードで事前シミュレーションが 見れる。造形時間、材料使用量も確認できる

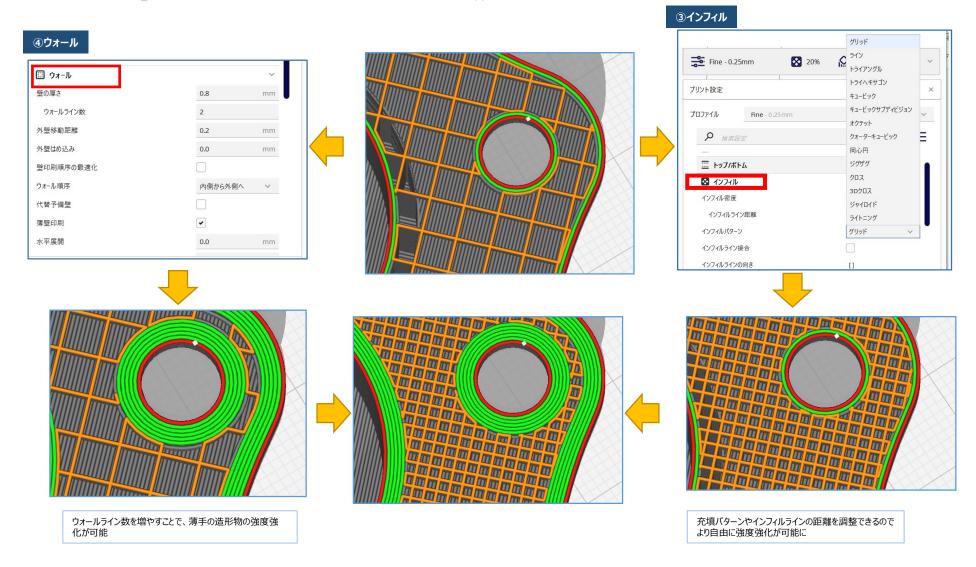
印刷用データ「gコード」にする

④詳細設定(積層ピッチ・インフィル・サポート・密着性)

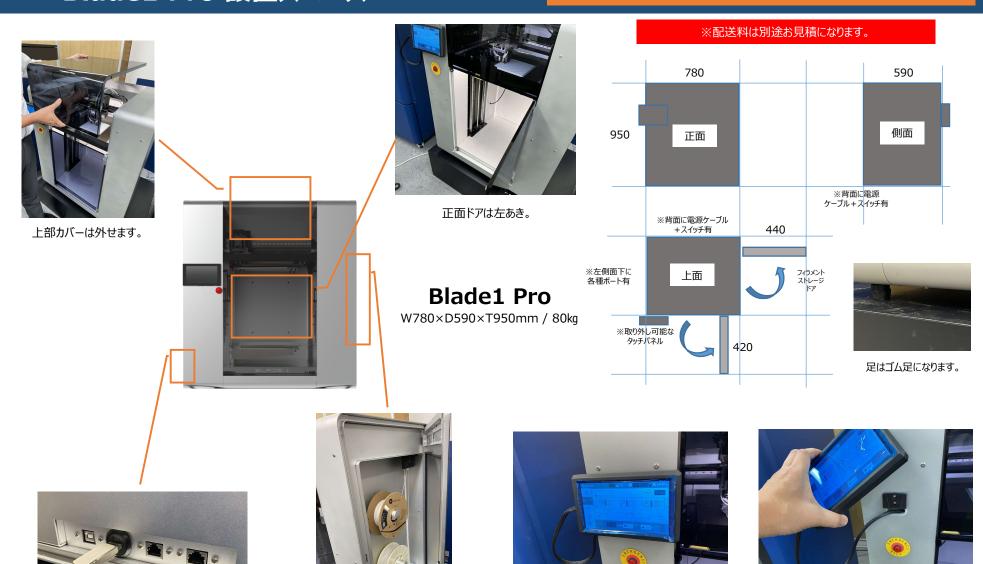

Fusion Technology

簡単モード

Custom >


■ Blade1Pro 付属専用スライスソフト「Blade Acc」 カスタムモード

ビルドプレートに接地する土台面の選択・編集が可能



■ Blade1Pro 付属専用スライスソフト「Blade Acc」 モデル強化編集

「カスタムモード」では、造形モデルの強度強化も自由に編集可能です。

左側面下にUSBケーブル・Udisk・LANポートがあります。 (Wifiも使用可能です)

右側面にフィラメントストレージ。

■ Blade1 Pro 電源

200V単相 / 1 Kw

本体側電源スイッチ

ご用意いただくコンセント形状 接地極付250V 15Aまたは250V 20A

250V 15A

250V 20A

コンセント形状

■ Blade1 Pro お問い合わせは・・

お問い合わせ先:株式会社フュージョンテクノロジー

mail: I-devo@fusiontechnology.co.jp

Tel: 03-6914-1634 (平日10-19時)

URL : https://www.fusiontechnology.co.jp/

